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Short history & motivation

Re�ected Stochastic Di¤erential Equations were �rst studied by Skorohod (1961)
and, after that, for general domains, by Lions, Sznitman (1984), Saisho (1987).
The re�ected di¤usion processes give us a probabilistic interpretation of the
solution of eliptic and parabolic PDE with Neumann boundary conditions.

The Euler approximation for forward RSDE was considered by Chitashvili,
Lazrieva (1981) and the Euler-Peano approximation was used by Saisho (1987) to
solve RSDEs with Lipschitz conditions.

In order to approximate the solution of RSDEs the penalization method was also
useful (see Menaldi, 1983).

Asiminoaei, R¼aşcanu (1997) and Ding, Zhang (2008) combined the penalization
method with the splitting-step idea and propose new schemes for SDE with
re�ection at the boundary of the domain.

Moreover, the penalization method was used for the existence of a solution in the
case of backward SDE with a maximal monotone operator of subdi¤erential type
(Pardoux, R¼aşcanu, 1998 and Maticiuc, R¼aşcanu, 2007).

Euler-type approximations for backward stochastic di¤erential equations were
introduced by Bouchard, Touzi (2004) and Zhang (2004).
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Backward Stochastic Variational Inequalities

First, we remind the problem of the existence and uniqueness of the solution for the
backward stochastic di¤erential equation involving an subdi¤erential operator:8>><>>:

dXt = b(Xt )dt + σ(Xt )dWt , t 2 [0,T ] ,

dYt + F (t ,Xt ,Yt ,Zt ) dt 2 ∂ϕ (Yt ) dt + ZtdWt , t 2 [0,T ] ,

X0 = x , YT = g (XT ) .

(1)

Here (Wt )t�0 is a standard Brownian motion de�ned on a complete right continuous
stochastic basis (Ω,F ,P,Ft ).

We will make the following assumptions on the coe¢ cient functions:

The functions

b : Rd ! Rd , σ : Rd ! Rd�d ,

F : [0,T ]�Rd �Rk �Rk�d ! Rk , g : Rd ! Rk
(2)

are continuous and
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there exist α 2 R and L, β,γ � 0 such that the coe¢ cients satisfy:

(i ) jb (x )� b (x̃ ) j � L jx � x̃ j ,

(ii ) jjσ (x )� σ (x̃ ) jj � L jx � x̃ j ,

(iii )


y � ỹ , f (t , x , y , z )� f (t , x , ỹ , z )

�
� αjy � ỹ j2,

(iv ) jf (t , x , y , z )� f (t , x , y , z̃ )j � β jjz � z̃ jj ,

(3)

for all t 2 [0,T ], x , x̃ 2 Rd , y , ỹ 2 Rk , z , z̃ 2 Rk�d .

There exist some constants M > 0 and p, q 2 N such that:

(i )
��g (x )�� � M �1+ jx jq �,

(ii )
��f (t , x , y , 0)�� � M �1+ jx jp + jy j�, (4)

for all t 2 [0,T ], x 2 Rd , y 2 Rk .

The function ϕ : Rk ! (�∞,+∞] is a proper convex l.s.c. function, and there exist
M > 0 and r 2 N such that

jϕ(g (x ))j � M (1+ jx jr ), 8x 2 Rd (5)
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Theorem (see [Pardoux, R¼aşcanu, 98])

Under the assumptions (2)-(5), there exists a unique triple of Ft -progressively
measurable stochastic processes (Yt ,Zt ,Ut )t2[0,T ], solution of the BSVI:

Yt +
Z T

t
Usds = g (XT ) +

Z T

t
f (s ,Xs ,Ys ,Zs )ds �

Z T

t
ZsdWs ,

for all t 2 [0,T ] , P-a.s.,

(6)

with (Yt ,Ut ) 2 ∂ϕ, P (dω)
 dt. Moreover we have the following properties of the

solution of Eq.(6):

1 Y 2 L2ad (Ω;C ([0,T ] ;Rk )), Z 2 L2ad (Ω; L2([0,T ] ;Rk�d )) and
U 2 L2ad (Ω; L2([0,T ] ;Rk )).

2 There exists some constant C > 0, such that, for all t , t̃ 2 [0,T ], x , x̃ 2 Rd :

(i ) E sup
t2[0,T ]

jYt j2 � C (1+ jx j2)

(ii ) E sup
t2[0,T ]

jY xt � Y x̃t j2 � CE
h��g (X xT )� g (X x̃T )��2

+
Z T

0

��f (s ,X xs ,Y xs ,Z xs )� f (s ,X x̃s ,Y xs ,Z xs )��2dsi.

Lucian Maticiuc & Eduard Rotenstein Approximation of backward stochastic variational inequalities



Theorem (see [Pardoux, R¼aşcanu, 98])
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The existence result for (6) is obtained via Yosida approximations. De�ne for ε > 0
the convex C 1-function ϕε by

ϕε (y ) := inf
�
1
2ε
jy � v j2 + ϕ (v ) : v 2 Rk

�
We denote by

Jε(y ) := (I + ε∂ϕ)�1 (y )

and we have that

rϕε (y ) =
y � Jεy

ε
, rϕε (y ) 2 ∂ϕ (Jεy ) ,

ϕε (y ) =
1
2ε
jy � Jεy j2 + ϕ (Jεy ) , 8y 2 Rk .

(7)

For an arbitrary (t , x ) 2 [0,T ]�Rd , ε 2 (0, 1), by a classical result there exists
(Y ε
t ,Z

ε
t )t2[t ,T ] the unique solution of the following approximating BSDE:

Y ε
s +

Z T

s
rϕε(Y ε

r )dr = g (XT ) +
Z T

s
f (r ,Xr ,Y ε

r ,Z
ε
r )dr

�
Z T

s
Z ε
r dWr , 8s � t , P-a.s.,

solution that converges to the solution of Eq.(6).
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Approximation schemes for BSVI

We introduce an approximation scheme for the solution of Eq.(6):

Consider a grid of [0,T ] : π = fti = ih, i � ng, with h := T /n, n 2 N�,

De�ne X π the clasical Euler scheme for X ,

First, using the Yosida approximation for ∂ϕ, we have, for all t � 0, P-a.s.:

Y ε
t +

Z T

t
rϕε (Y ε

r ) dr = g (X
π
T ) +

Z T

t
F (r ,X π

r ,Y
ε
r ,Z

ε
r ) dr �

Z T

t
Z ε
r dWr , (8)

Further, we de�ne an Euler-Yosida type approximation for Y ε (suggested by
[Bouchard, Touzi, 2004]).

Let YT := g (X π
T ) and, for i = n � 1, 0 ,

Y ε
ti � Y

ε
ti+1 � h

�
f (ti ,X

π
ti ,Y

ε
ti ,Z

ε
ti )�rϕε(Y ε

ti )
�
� Z ε

ti (Wti+1 �Wti ) (9)

We take the conditional expectation EFi :

Y ε
ti � EFi (Y ε

ti+1 )� h
�
f (ti ,X

π
ti ,Y

ε
ti ,Z

ε
ti )�rϕε(Y ε

ti )
�

We multiply (9) with Wti+1 �Wti and we take EFi :

Z ε
ti �

1
h

EFti (Y ε
ti+1 (Wti+1 �Wti ))
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For the above Euler-Yosida approximation scheme, we consider the step of the grid
h = ε3 and we de�ne, for i = n � 1, 0 :8>>>>>><>>>>>>:

Y π
ti := EFi (Y π

ti+1 ) + h
�
f (ti ,X π

ti ,Y
π
ti ,Z

π
ti )�rϕh1/3 (Y π

ti )
�
,

Y π
T := g (X π

T ),

Z π
ti :=

1
h

EFti (Y π
ti+1 (Wti+1 �Wti )),

Uπ
ti := rϕh1/3 (EFi (Y π

ti+1 )).

(10)

Consider now a continuous version of (10). From the martingale representation
theorem there exists a square integrable process Z̃ such that

Y π
ti+1 = EFi (Y π

ti+1 ) +
Z ti+1

ti
Z̃sds ,

and, therefore, we de�ne, for t 2 (ti , ti+1 ]

Y π
t := Y π

ti � (t � ti )
�
f (ti ,X

π
ti ,Y

π
ti ,Z

π
ti )�rϕh1/3 (Y π

ti )
�
+
Z ti+1

ti
Z̃sdWs .

From the isometry property we notice that

Z π
ti =

1
h

EFi
�Z ti+1

ti
Z̃sdWs

�
, for i = 0, n � 1. (11)
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An error estimate of the approximation is given by the following result.

Theorem

Under the assumptions (2)-(5), there exists C > 0 which depends only on the
Lipschitz constants of the coe¢ cients, such that:

sup
t2[0,T ]

E jYt � Y π
t j
2 +E

Z T

0
jZt � Z π

t j
2 dt � Ch.

Proof (sketch).

For i = 0, n � 1 let denote: δYt := Yt � Y π
t , δZt := Zt � Z π

t . Applying the Energy
equality, using the relation (11) and the properties of the Yosida approximation, we
obtain, by standard calculus:

E jδYti j
2+

1
2

Z ti+1

ti
E jδZs j2 ds � (1+Ch)

�
h2 +E

��δYti+1 ��2 + Z ti+1

ti
E
��Zs � Z̄ π

ti

��2 ds� ,
(12)

where

Z̄ π
ti :=

1
h

EFi
�Z ti+1

ti
Zsds

�
is the best approximation in L2 of Z by a process which is constant of each interval
[ti , ti+1).
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Proof (cont.)

Iterating (12) and summing upon i , we deduce:

E jδYti j
2 +

1
2

Z T

0
E jδZs j2 ds � C

(
h +

n�1
∑
i=0

Z ti+1

ti
E
��Zs � Z̄ π

ti

��2 ds) .
Since we have

max
i=0,n�1

sup
t2[ti ,ti+1 )

E jYt � Yti j
2 +

n�1
∑
i=0

E

Z ti+1

ti

��Zt � Z̄ π
ti

��2 dt � Ch,
the conclusion of the theorem follows.

Lucian Maticiuc & Eduard Rotenstein Approximation of backward stochastic variational inequalities



Generalized BSVI

Consider now the following generalized backward stochastic variational inequality (in
the Markovian case):8>><>>:

dYt + F (t ,Xt ,Yt ,Zt ) dt + G (t ,Xt ,Yt ) dAt 2
2 ∂ϕ (Yt ) dt + ZtdWt , 0 � t � T ,

YT = g (XT ) .

(13)

Throughout this section we suppose that F ,G satis�es the same assumption as F
from the �rst section. It is proved (see [Maticiuc, R¼aşcanu, 2010]) that the above
equation admits a unique solution, i.e.

Yt +
Z T

t
Usds = g (XT ) +

Z T

t
F (s ,Xs ,Ys ,Zs ) ds

+
Z T

t
G (s ,Xs ,Ys ) dAs �

Z T

t
ZsdWs , for all t 2 [0,T ] a.s.,

where
Ut 2 ∂ϕ (Yt ) , a.e. on Ω� [0,T ] .

More detailed, let D be a open bounded subset of Rd of the form

D = fx 2 Rd : ` (x ) < 0g, Bd (D) = fx 2 Rd : ` (x ) = 0g,

where ` 2 C 3b
�
Rd
�
, jr` (x )j = 1, for all x 2 Bd (D).
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It follows, (using the paper of [Lions, Sznitman, 1984]), that for each (t , x ) 2 R+ �D
there exists a unique pair of progressively measurable continuous processes

(X t ,xs ,At ,xs )s�0,

with values in D �R+, solution of the re�ected SDE:8>>>>><>>>>>:
X t ,xs = x +

Z s_t

t
b(r ,X t ,xr )dr +

Z s_t

t
σ(r ,X t ,xr )dWr �

Z s_t

t
r`(X t ,xr )dAt ,xr ,

s 7�! At ,xs is increasing

At ,xs =
Z s_t

t
1fX t ,xr 2Bd (D)gdA

t ,x
r .

(14)
Moreover, it can be proved that

E

 
sup

s2[0,T ]

���X t ,xs � X t 0 ,x 0s

���p! � C ���x � x 0��p + ��t � t 0�� p2 � ,
and for all µ > 0

E
h
eµAt ,xT

i
< ∞.
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Theorem

Under the assumptions (2)-(5), the generalized BSVI (13) admits a unique solution
(Yt ,Zt ,Ut ) of Ft -progressively measurable processes. Moreover, for any
0 � s � t � T , we have, for some positive constant C :

(a) E

�Z t

s

�
jYr j2 + jjZr jj2

�
dr +

Z t

s
jYr j2 dAr

�
� CM1

(b) E sup
s�r�t

jYr j2 � CM1,

(c ) E
�

ϕ (Yt )
�
� CM2,

(d ) E

�Z t

s
jUr j2 dr

�
� CM2,

(15)

where

M1 = E

�
jξj2 +

Z T

0

���F (s , 0, 0) ��2ds + ��G (s , 0) ��2dAs�� ,
M2 = E

�
jξj2 + ϕ (ξ)

�
.
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The main idea for the proof of the existence for (13) consists in taking the
approximating equation

Y ε
s +

Z T

s
rϕε (Y ε

r ) dr = g
�
X t ,xT

�
+
Z T

s
F
�
r ,X t ,xr ,Y ε

r ,Z
ε
r
�
dr

+
Z T

s
G
�
r ,X t ,xr ,Y ε

r
�
dAr �

Z T

s
Z ε
r dWr , 8s � t , P-a.s.

(16)

Essential for the estimates of the process (Y ε)ε>0 is the stochastic subdi¤erential
inequality given by:

Lemma (see [Pardoux, R¼aşcanu, 1998])

Let U ,Y be k-dimensional c.p.m.s.p. (continuous progressively measurable stochastic
processes) and V be a real c.m.s.p. If

Y is a semimartingale,

V is a positive bounded variation stochastic process,

ϕ : Rk ! ]�∞,+∞] is a proper convex l.s.c. function,

Ur 2 ∂ϕ (Yr ) ,then

Z T

t
Vr hUr , dYr i+ Vt ϕ (Yt ) +

Z T

t
ϕ (Yr ) dVr � VT ϕ (YT ) .
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Consequently, we can derive, for some constants λ, µ su¢ ciently large, that

(a) E

Z T

0
eλs+µAs

��rϕε (Y ε
s )
��2ds � CM2,

(b) E

Z T

0
eλs+µAs ϕ

�
Jε (Y ε

s )
�
ds � CM2,

(c ) Eeλs+µAs
��Y ε
s � Jε (Y ε

s )
��2 � εCM2,

(d ) Eeλs+µAs ϕ
�
Jε (Y ε

s )
�
� CM2.

and, that (Y ε,Z ε)ε>0 is a Cauchy sequence, i.e.:

E

"
sup

0�t�T
eλt+µAt

��Y ε
t � Y δ

t

��2#+E

�Z T

0
e

λr+µAr ����Z ε
r � Z δ

r

����2dr� � C (ε+ δ) .

The unique solution (Y ,Z ,U ) of Eq.(13) is obtained as the limit of the approximating
sequence (Y ε

s ,Z
ε
s ,rϕε (Y ε

s )).

Lucian Maticiuc & Eduard Rotenstein Approximation of backward stochastic variational inequalities



Applications to PVI

As usual, if we consider the deterministic function u(t , x ) = Y t ,xt ,
(t , x ) 2 [0,T ]�D, we will obtain a reprezentation for the solution of the following
PVI: 8>>>>>>><>>>>>>>:

∂u(t , x )
∂t

�Ltu (t , x ) + ∂ϕ
�
u(t , x )

�
3 F

�
t , x , u(t , x ), (ruσ)(t , x )

�
,

t > 0, x 2 D,
∂u(t , x )

∂n
3 G

�
t , x , u(t , x )

�
, t > 0, x 2 Bd (D) ,

u(0, x ) = g (x ), x 2 D,

(17)

where the operator Lt is given by

Ltv (x ) =
1
2

d

∑
i ,j=1

(σσ�)ij (t , x )
∂2v (x )
∂xi ∂xj

+
d

∑
i=1
bi (t , x )

∂v (x )
∂xi

, for v 2 C 2(Rd ).

The functions that appear in (17) satisfy the conditions imposed in the previous slides
(for k = 1).
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We have the following result.

Theorem

Under the considered hypotesis on b, σ, F , G and g , the Parabolic Variational
Inequality (17) admits at least one viscosity solution u : [0,∞)�D ! R, such that
u(0, x ) = h (x ) , 8 x 2 D and

u(t , x ) 2 Dom (ϕ) , 8(t , x ) 2 (0,∞)�D.

Moreover, if
r ! G (t , x , r )

is a non-increasing function, for t � 0, x 2 Bd (D), and there exists a continuous
function m : [0,∞)! [0,∞), m (0) = 0, such that��F (t , x , r , p)� F (t , y , r , p)�� � m� jx � y j (1+ jpj) �,

8 t � 0, x , y 2 D, p 2 Rd ,

then the uniqueness holds.
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Approximation schemes for Generalized BSVI

For the generalized system considered above, we propose a mixed Euler-Yosida type
approximation scheme.

For the simplicity of the presentation, we consider the case ϕ � 0 :

Consider the grid of [0,T ] : π = fti = ih, i � ng, with h := T /n, n 2 N�,

De�ne X π the Euler scheme for the re�ected process X :

� X π
0 = x , Aπ

0 = 0,

� X̂ π
ti+1 = X

π
ti + b(ti ,X

π
ti )(ti+1 � ti ) + σ(ti ,X π

ti )(Wti+1 �Wti ),

Considering the projection to the domain we de�ne

� X π
ti+1 =

8<: X̂ π
ti+1 , X̂ π

ti+1 2 D,

PrD(X̂
π
ti+1 ) , X̂ π

ti+1 /2 D,
and

� Aπ
ti+1 =

8<: Aπ
ti , X̂ π

ti+1 2 D,

Aπ
ti + jjPrD(X̂

π
ti+1 )� X̂

π
ti+1 jj , X̂ π

ti+1 /2 D;
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Let Y π
T := g (X π

T ) and, for i = n � 1, 0 :

Yti � Yti+1 � G (X π
ti+1 ,Yti+1 )∆A

π
ti � Zti ∆Wti

We take the conditional expectation EFi :

Yti � EFi (Yti+1 )�EFi [G (X π
ti+1 ,Yti+1 )∆A

π
ti ]

This suggest us to de�ne the following approximation scheme:8<:
Y π
ti := EFi [Y π

ti+1 � G (X
π
ti+1 ,Yti+1 )∆A

π
ti ], Y π

T := g (X π
T ),

Z π
ti :=

1
h

EFti [Y π
ti+1∆Wti � G (X π

ti+1 ,Yti+1 )∆A
π
ti ∆Wti ],

The proof of the convergence for the de�ned approximation scheme is still in
progress.
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